
Method Development for the Detection of Exicure's AST-008 in Human Plasma

Introduction

AST-008 is a novel spherical nucleic acid (SNA) configuration of a toll-like receptor 9 (TLR9) agonist oligonucleotide, designed to trigger innate and adaptive immune responses that are useful in

oncology applications. AST-008 activated key immune cells and cytokines predictive for an antitumor effect in a Phase 1 healthy-volunteer study.

A sensitive bioanalytical method was required to determine the concentrations of AST-008 in human plasma with minimal detection of metabolites to pharmacokinetic analysis in clinical support studies.

Objective

The concentrations of AST-008 in clinical samples were initially determined by hybridizing a complementary, fluorescently-labeled peptide nucleic acid (PNA) probe and using liquid chromatography with fluorescence detection (LC-FD). All samples, when analyzed with this method, were below the limit of quantification (BLQ) of 10 ng/mL; therefore, a more sensitive method was required. The objective of this study was to develop a bioanalytical method with greater sensitivity, as determined by the lower limit of quantitation (LLOQ). Two hybridization methods (Dual Hybridization and Hybridization-Ligation) and two platforms (Fluorescence and ECL) were compared in order to select the one with greatest sensitivity and selectivity for further validation.

	Method	Advantages	Limitations
	Hybridization ELISA	No sample clean up (plasma) or minimum sample cleanup (tissue)	Narrower calibration range than
		Low reagent costs	chromatographic methods (10- to 50-fold)
		Very high sensitivity, precision and accuracy	
		Highly selective of parent	
		Widely used to support preclinical and clinical studies	Quantitation of parent / total detectable oligonucleotide metabolites (shortmers) not quantifiable in parent assay
		High target specificity	

Table 1: Advantages and Limitations of Hybridization Methods

Danielle Salha(1), Aude Carine Ndoti(1), Mira Sassin(1), Alexandra Michaux(1), Djahida Djerir(1), Thu-Bich Vu(1) and Scott Mix(2) (1): Altasciences, Laval, Quebec, Canada (2): Exicure, Skokie, Illinois, United States

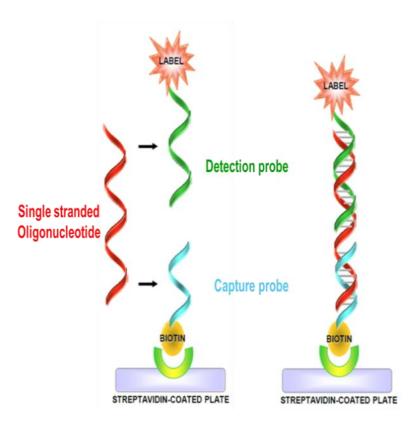
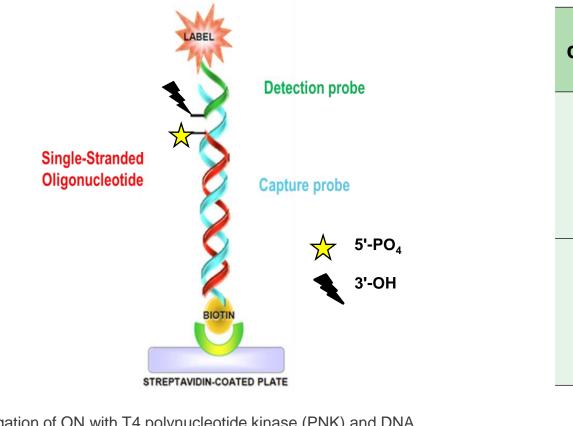



Figure 2: Dual Hybridization ELISA

- Hvbridization of oligonucleotide (ON) with capture and detection probes
- Non-Hybridized probe will be washed away
- Advantage: Enhanced sensitivity and wider dynamic range sadvantage: Cross-Reactivity with 3' and 5' metabolites

Efler, SM et al.(2005) Oligonucleotides, 15 (2) 119–131

igation of ON with T4 polynucleotide kinase (PNK) and DNA igase/ATP

Figure 3: Hybridization-Ligation Fluorescence

- Non-Ligated probe will be washed away
- Advantage: Minimal 5'-metabolite cross-reactivit Disadvantage: Reduced sensitivity
- Yu RZ et al.(2002) Anal. Biochem. 304, 19-25

Results

Table 2: Sensitivity of LC-FD versus Dual Hybridization Methods

	Dual Hybridization	LC-FD
LLOQ (Plasma)	1.000 ng/mL	10.00 ng/mL

• The Dual Hybridization method was evaluated first using the fluorescence platform and although the LLOQ was lower than the LC-FD method, higher sensitivity was pursued utilizing additional hybridization methods and platforms.

Table 3: Metabolite Cross-Reactivity with Hybridization-Ligation and Dual Hybridization

		Hybridization-Ligation ECL Method Dual Hybridization ECL Meth					
Nominal Metabolite Concentration (ng/mL)		105.0					
			te Identity	Metabolite Identity			
	Run ID	N-1 AST-008	N-2 AST-008	N-1 AST-008	N-2 AST-008		
Observed	EXI557.33	7.401	6.573	118.4	104.3		
Concentration	EXI557.10	7.470	6.493	123.8	95.86		
Ν		2	2	2	2		
Меа	n	7.436	6.533	121.1	100.1		
Cross-Reactivity (%)		7.1	6.2	115.3	95.3		

 $%Cross - Reactivity = (Mean observed concentration) \div (Nominal metabolite concentration) \times 100$

• The hybridization-ligation ECL method had a minimal cross-reactivity with N-1 or N-2 metabolites, whereas the dual hybridization ECL method detected 100% of both metabolites.

	Table 4: Hybridization-Ligation ECL Method Precision and Accuracy						
Nominal oncentration	LQCA	LQCB	QC1A	QC1B	QC2	QC3	ULQ
(ng/mL)	0.5000	1.000	1.500	3.000	30.00	105.0	150.0
	0.5110	1.009	1.587	3.186	29.08	111.8	158.4
	0.5066	1.020	1.527	3.174	33.23	113.0	164.3
Run ID EXI557.36	0.5293	1.018	1.450	3.039	30.97	114.5	172.4
EX1337.30	0.5343	1.048	1.477	2.926	30.60	115.8	175.4
	0.5519	1.016	1.471	3.075	34.46	125.4	181.0
Ν	5	5	5	5	5	5	5
Mean	0.5266	1.022	1.502	3.080	31.67	116.1	170.3
SD	0.0183	0.0151	0.0551	0.1065	2.153	5.399	8.979
%CV	3.5	1.5	3.7	3.5	6.8	4.7	5.3
%RE	-5.3	2.2	0.2	2.7	5.6	10.6	13.5

 The hybridization-ligation ECL method exhibited acceptable precision and accuracy (%CV ≤ 20%) and %RE \pm 20%) indicating a sensitivity of 0.5000 ng/mL.

Table 5: Hybridization-Ligation ECL Method Matrix Effect Selectivity

Nominal oncentration (ng/mL)		Blank	LQCA LQCB		QC3			
		0.0000	0.5000		1.000		105.0	
Run ID	Lot #	AST-008	AST-008	% RE	AST-008	% RE	AST-008	% RE
EXI557.33	1	BLQ	0.4553	-8.9	0.8991	-10.1	101.2	-3.6
EXI557.41	2	BLQ	0.5232	4.6	1.0490	4.9	114.6	9.2
	3	BLQ	0.3786	-24.3	0.8248	-17.5	93.77	-10.7
	4	BLQ	0.3275	-34.5	0.6893	-31.1	82.11	-21.8
	5	BLQ	0.4091	-18.2	0.8099	-19.0	90.14	-14.2
	6	BLQ	0.4202	-16.0	0.8099	-19.0	96.62	-8.0
	7	BLQ	0.5327	6.5	0.9983	-0.2	116.9	11.3
	8	BLQ	0.4987	-0.3	0.9983	-0.2	115.9	10.4
	9	BLQ	0.4710	-5.8	0.8746	-12.5	102.7	-2.2
	10	BLQ	0.4631	-7.4	0.9237	-7.6	105.1	0.1
	Mean	BLQ	0.4479	-10.4	0.8877	-11.2	101.9	-2.9

• The hybridization-ligation ECL method exhibited acceptable selectivit y≥8 of 10 lots with % RE ± 20%) at the 0.5000 ng/mL and 105.0 ng/mL levels.

 Table 6: Hybridization-Ligation ECL Method Dilution Linearity

Nominal conc	entration (ng/mL)		20000	
Dilution factor Concentration after dilution (ng/mL)		1:200 100.0	1:500 40.00	1:5000 4.000
Run ID EXI557.38	Observed concentration (ng/mL)	22163 20399 20175 20616	24146 18413 18966 19912	21408 18245 18305 18494
N Mean SD %CV %RE		4 20838 901.4 4.3 4.2	4 20359 2599 12.8 1.8	4 19113 1533 8.0 -4.4

• Sample dilution was found to be acceptable (%O/ \leq 20% and %Nominal \pm 20%) up to 5000 foldusing the hybridization-ligation ECL method.

Short desci **Biological** n Analyte Calibration **Sensitivity** Lower limit

Between-ru Between-ru Within-run a Within-run Matrix effect

Metabolite of

Metabolite i

Hook effect Dilution line

Whole blood Stock stabil

Short-term 22 °C Nomir **Freeze-thaw** Long-term r -20 °C Nomi

• The hybridization-ligation ECL method is fully validated with respect to accuracy, precision, selectivity (matrix effects, metabolite cross-reactivity and interference), hook effect, dilution linearity and stability.

Conclusions

LEARN MORE ABOUT OUR BIOANALYSIS AND RESEARCH SERVICES ()

Table 7: Validation Summary for the Determination of AST-008 in Human Plasma Using the Hybridization-Ligation ECL Method

ription of method	Hybridization-Ligation ECL				
matrix	Human Plasma (K ₂ EDTA)				
	AST-008				
concentrations	0.5000 to 150.0 ng/mL				
	0.5000 ng/mL (LOQ QC)				
of quantification	LLOQ (ng/mL)	0.5000			
	Between-run accuracy	99%			
	Between-run precision	12%			
	Within-run accuracy	95%			
	Within-run precision	2%			
in accuracy	91% to 99%				
In precision	4% to 12%				
accuracy	90% to 95%				
precision	1% to 5%				
>t	No significant interference was observed in 9 out of 10 individual human plasma lots: acceptance criteria were met at all tested levels (Blank [un-spiked], LOQ QC and QC3). Acceptance criteria were met at all tested levels (Blank [un-spiked], LOQ QC and QC3) in hemolyzed (up to 2%) human plasma and lipemic (>300 mg/dL triglycerides) human plasma.				
cross-reactivity	Minimal cross-reactivity observed for N-1_AST-008 (4%) and N-2_AST-008 (1%) at QC3 level (105.0 ng/mL).				
interference	No effect on the determination of AST-008 in human plasma tested at QC1 and QC3 levels in the presence of either metabolite N-1_AST-008 or N-2_AST-008.				
t	No hook effect observed up to 20				
earity	DQC1 at 20000 ng/mL was use and 1/5000, whereas DQC2 at dilution factor of 1/5.	d for dilution fac			
	Diluted 5-fold	86%	3%		
	Diluted 200-fold	87%	4%		
	Diluted 5000-fold	95%	3%		
d stability	Reported up to 2 hours on ice/wa				
lity at -20 °C Nominal	Reported up to 19 days at -20 °C nominal. Extended period will be conducted on a later date.				
matrix stability at nal	Reported up to 26.2 hours at ambient room temperature.				
w matric stability	Reported up to 5 cycles.				
matrix stability at inal	Reported up to 11 days. Extended period will be conducted	ed on a later date			

✓ The hybridization-ligation ECL method to measure AST-008 concentrations in human plasma was successfully validated with the range of 0.5000 ng/mL to 150.0 ng/mL ✓ This method is 20-fold more sensitive than the PNA probe, LC-FD method that was formerly validated for the same analyte.

✓ The level of sensitivity obtained using the hybridization-ligation ECL method enabled the detection of low concentrations of AST-008 in clinical study samples that had previously been undetectable using the PNA probe LC-FD method.